Title of article :
Reduction theory for symmetry breaking with applications to nematic systems
Author/Authors :
Gay-Balmaz، نويسنده , , François and Tronci، نويسنده , , Cesare، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
19
From page :
1929
To page :
1947
Abstract :
We formulate Euler–Poincaré and Lagrange–Poincaré equations for systems with broken symmetry. We specialize the general theory to present explicit equations of motion for nematic systems, ranging from single nematic molecules to biaxial liquid crystals. The geometric construction applies to order parameter spaces consisting of either unsigned unit vectors (directors) or symmetric matrices (alignment tensors). On the Hamiltonian side, we provide the corresponding Poisson brackets in both Lie–Poisson and Hamilton–Poincaré formulations. The explicit form of the helicity invariant for uniaxial nematics is also presented, together with a whole class of invariant quantities (Casimirs) for two-dimensional incompressible flows.
Keywords :
nematic liquid crystals , Euler–Poncaré and Lagrange–Poincaré reduction , Symmetry breaking , order parameter
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2010
Journal title :
Physica D Nonlinear Phenomena
Record number :
1726735
Link To Document :
بازگشت