Title of article :
Teichmüller spaces as degenerated symplectic leaves in Dubrovin–Ugaglia Poisson manifolds
Author/Authors :
Chekhov، نويسنده , , Leonid and Mazzocco، نويسنده , , Marta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
13
From page :
2109
To page :
2121
Abstract :
In this paper, we study the Goldman bracket between geodesic length functions both on a Riemann surface Σ g , s , 0 of genus g with s = 1 , 2 holes and on a Riemann sphere Σ 0 , 1 , n with one hole and n orbifold points of order two. We show that the corresponding Teichmüller spaces T g , s , 0 and T 0 , 1 , n are realised as real slices of degenerated symplectic leaves in the Dubrovin–Ugaglia Poisson algebra of upper-triangular matrices S with 1 on the diagonal.
Keywords :
Teichmüller space , Monodromy preserving deformations , Goldman bracket , Stokes matrix
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2012
Journal title :
Physica D Nonlinear Phenomena
Record number :
1726847
Link To Document :
بازگشت