Title of article
Topological permutation entropy
Author/Authors
Amigَ، نويسنده , , José M. and Kennel، نويسنده , , Matthew B.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2007
Pages
6
From page
137
To page
142
Abstract
Permutation entropy quantifies the diversity of possible ordering of the successively observed values a random or deterministic system can take, just as Shannon entropy quantifies the diversity of the values themselves. When the observable or state variable has a natural order relation, making permutation entropy possible to compute, then the asymptotic rate of growth in permutation entropy with word length forms an alternative means of describing the intrinsic entropy rate of a source. Herein, extending a previous result on metric entropy rate, we show that the topological permutation entropy rate for expansive maps equals the conventional topological entropy rate familiar from symbolic dynamics. This result is not limited to one-dimensional maps.
Keywords
Order patterns , Topological entropy , Permutation entropy
Journal title
Physica D Nonlinear Phenomena
Serial Year
2007
Journal title
Physica D Nonlinear Phenomena
Record number
1728234
Link To Document