Title of article :
Geometric gradient-flow dynamics with singular solutions
Author/Authors :
Holm، نويسنده , , Darryl D. and Putkaradze، نويسنده , , Vakhtang and Tronci، نويسنده , , Cesare، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
2952
To page :
2965
Abstract :
The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcy’s Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We identify singular solutions of these equations corresponding to collapsed (clumped) states and discuss their evolution.
Keywords :
Characteristic equations , Euler flow , Singular solutions , Dissipation , Gradient flows
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2008
Journal title :
Physica D Nonlinear Phenomena
Record number :
1728738
Link To Document :
بازگشت