Title of article
Stability of an -dimensional invariant torus in the Kuramoto model at small coupling
Author/Authors
Chiba، نويسنده , , Hayato and Pazَ، نويسنده , , Diego، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
14
From page
1068
To page
1081
Abstract
When the natural frequencies are allocated symmetrically in the Kuramoto model there exists an invariant torus of dimension [ N / 2 ] + 1 ( N is the population size). A global phase shift invariance allows us to reduce the model to N − 1 dimensions using the phase differences, and doing so the invariant torus becomes [ N / 2 ] -dimensional. By means of perturbative calculations based on the renormalization group technique, we show that this torus is asymptotically stable at small coupling if N is odd. If N is even the torus can be stable or unstable depending on the natural frequencies, and both possibilities persist in the small coupling limit.
Keywords
Kuramoto model , Renormalization group method , Quasiperiodicity
Journal title
Physica D Nonlinear Phenomena
Serial Year
2009
Journal title
Physica D Nonlinear Phenomena
Record number
1729006
Link To Document