Title of article :
Parametric solution method for self-consistency equations and order parameter equations derived from nonlinear Fokker–Planck equations
Author/Authors :
Frank ، نويسنده , , T.D. and Mongkolsakulvong، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
1186
To page :
1196
Abstract :
We propose a parametric approach to solve self-consistency equations that naturally arise in many-body systems described by nonlinear Fokker–Planck equations in general and nonlinear Vlasov–Fokker–Planck equations of Haissinski type in particular. We demonstrate for the Hess–Doi–Edwards model and the McMillan model of nematic and smectic liquid crystals that the parametric approach can be used to compute bifurcation diagrams and critical order parameters for systems exhibiting one or more than one order parameters. In addition, we show that in the context of the parametric approach solutions of the Haissinski model can be studied from the perspective of a pseudo order parameter.
Keywords :
Self-consistency equations , order parameters , Parametric representation , Bifurcation diagrams
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2009
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729029
Link To Document :
بازگشت