Title of article :
A numerical study of the topology of normally hyperbolic invariant manifolds supporting Arnold diffusion in quasi-integrable systems
Author/Authors :
Guzzo، نويسنده , , Massimiliano and Lega، نويسنده , , Elena and Froeschlé، نويسنده , , Claude، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
1797
To page :
1807
Abstract :
We investigate numerically the stable and unstable manifolds of the hyperbolic manifolds of the phase space related to the resonances of quasi-integrable systems in the regime of validity of the Nekhoroshev and KAM theorems. Using a model of weakly interacting resonances we explain the qualitative features of these manifolds characterized by peculiar ‘flower-like’ structures. We detect different transitions in the topology of these manifolds related to the local rational approximations of the frequencies. We find numerically a correlation among these transitions and the speed of Arnold diffusion.
Keywords :
Hamiltonian systems , Arnold diffusion , Nekhoroshev theorem , KAM theorem , Normally hyperbolic manifolds , Symplectic maps , Stable and unstable manifolds
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2009
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729184
Link To Document :
بازگشت