Title of article :
A canonical model for gradient frequency neural networks
Author/Authors :
Large، نويسنده , , Edward W. and Almonte، نويسنده , , Felix V. and Velasco، نويسنده , , Marc J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
905
To page :
911
Abstract :
We derive a canonical model for gradient frequency neural networks (GFNNs) capable of processing time-varying external stimuli. First, we employ normal form theory to derive a fully expanded model of neural oscillation. Next, we generalize from the single oscillator model to heterogeneous frequency networks with an external input. Finally, we define the GFNN and illustrate nonlinear time-frequency transformation of a time-varying external stimulus. This model facilitates the study of nonlinear time-frequency transformation, a topic of critical importance in auditory signal processing.
Keywords :
Auditory system , Neural oscillation , Canonical model , Network dynamics , Nonlinear resonance
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2010
Journal title :
Physica D Nonlinear Phenomena
Record number :
1729452
Link To Document :
بازگشت