Title of article :
Perturbed Euler top and bifurcation of limit cycles on invariant Casimir surfaces
Author/Authors :
Garcيa، نويسنده , , Isaac A. and Hernلndez-Bermejo، نويسنده , , Benito، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Analytical perturbations of the Euler top are considered. The perturbations are based on the Poisson structure for such a dynamical system, in such a way that the Casimir invariants of the system remain invariant for the perturbed flow. By means of the Poincaré–Pontryagin theory, the existence of limit cycles on the invariant Casimir surfaces for the perturbed system is investigated up to first order of perturbation, providing sharp bounds for their number. Examples are given.
Keywords :
Casimir invariants , Perturbation Theory , Poisson systems , Limit cycles , Poincaré–Pontryagin theory , Hamiltonian systems
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena