Title of article :
Maximizing critical currents in superconductors by optimization of normal inclusion properties
Author/Authors :
Zhang، نويسنده , , Yanzhi and Peterson، نويسنده , , Janet and Gunzburger، نويسنده , , Max، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The movement of vortices in superconductors due to an applied current can induce a loss of perfect conductivity. Experimental observations show that material impurities can effectively prevent vortices from moving. In this paper, we provide numerical studies to investigate vortex pinning and critical currents through the use of an optimal control approach applied to a variant of the time-dependent Ginzburg–Landau model that can account for normal inclusions. The effects that the size and boundary of the sample and the number, size, shape, orientation, and location of the inclusion sites have on the critical current and vortex lattices are studied. In particular, the optimal control approach is used to determine the optimal properties of the impurities so as to maximize the critical current, i.e., the largest current that can pass through a superconductor without resistance.
Keywords :
Ginzburg–Landau equations , Vortex pinning , Superconductivity , Critical currents , optimal control
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena