Title of article :
A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter
Author/Authors :
Adriana Buica، نويسنده , , Adriana and Giné، نويسنده , , Jaume and Llibre، نويسنده , , Jaume، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
6
From page :
528
To page :
533
Abstract :
We deal with nonlinear T -periodic differential systems depending on a small parameter. The unperturbed system has an invariant manifold of periodic solutions. We provide the expressions of the bifurcation functions up to second order in the small parameter in order that their simple zeros are initial values of the periodic solutions that persist after the perturbation. In the end two applications are done. The key tool for proving the main result is the Lyapunov–Schmidt reduction method applied to the T -Poincaré–Andronov mapping.
Keywords :
Lyapunov–Schmidt reduction , Periodic Solution , Averaging method
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2012
Journal title :
Physica D Nonlinear Phenomena
Record number :
1730097
Link To Document :
بازگشت