Title of article :
On spectra of linearized operators for Keller–Segel models of chemotaxis
Author/Authors :
Dejak، نويسنده , , S.I. and Lushnikov، نويسنده , , P.M. and Ovchinnikov، نويسنده , , Yu.N. and Sigal، نويسنده , , I.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We consider the phenomenon of collapse in the critical Keller–Segel equation (KS) which models chemotactic aggregation of micro-organisms underlying many social activities, e.g. fruiting body development and biofilm formation. Also KS describes the collapse of a gas of self-gravitating Brownian particles. We find the fluctuation spectrum around the collapsing family of steady states for these equations, which is instrumental in the derivation of the critical collapse law. To this end we develop a rigorous version of the method of matched asymptotics for the spectral analysis of a class of second order differential operators containing the linearized Keller–Segel operators (and as we argue linearized operators appearing in nonlinear evolution problems). We explain how the results we obtain are used to derive the critical collapse law, as well as for proving its stability.
Keywords :
Matched asymptotics , Linearized operators , Critical Keller–Segel equation , Collapse and formation of singularities
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena