Title of article :
The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis
Author/Authors :
Lassas، نويسنده , , M. and Mueller، نويسنده , , J.L. and Siltanen، نويسنده , , S. and Stahel، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
14
From page :
1322
To page :
1335
Abstract :
The Novikov–Veselov (NV) equation is a (2+1)-dimensional nonlinear evolution equation that generalizes the (1+1)-dimensional Korteweg–de Vries (KdV) equation. The solution of the NV equation using the inverse scattering method has been discussed in the literature, but only formally (or with smallness assumptions in the case of nonzero energy) because of the possibility of exceptional points, or singularities in the scattering data. In this work, absence of exceptional points is proved at zero energy for evolutions with compactly supported, smooth and rotationally symmetric initial data of the conductivity type: q 0 = γ − 1 / 2 Δ γ 1 / 2 with a strictly positive function γ . The inverse scattering evolution is shown to be well-defined, real-valued, and preserving conductivity-type. There is no smallness assumption on the initial data.
Keywords :
nonlinear evolution equation , D -bar method , Nonlinear Fourier transform , Novikov–Veselov equation , Inverse scattering method , KdV equation
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2012
Journal title :
Physica D Nonlinear Phenomena
Record number :
1730172
Link To Document :
بازگشت