Title of article :
Spatial pattern formation in a chemotaxis–diffusion–growth model
Author/Authors :
Kuto، نويسنده , , Kousuke and Osaki، نويسنده , , Koichi and Sakurai، نويسنده , , Tatsunari and Tsujikawa، نويسنده , , Tohru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Mimura and one of the authors (1996) proposed a mathematical model for the pattern dynamics of aggregating regions of biological individuals possessing the property of chemotaxis. For this model, Tello and Winkler (2007) [22] obtained infinitely many local branches of nonconstant stationary solutions bifurcating from a positive constant solution, while Kurata et al. (2008) numerically showed several spatio-temporal patterns in a rectangle. Motivated by their work, we consider some qualitative behaviors of stationary solutions from global and local (bifurcation) viewpoints in the present paper. First we study the asymptotic behavior of stationary solutions as the chemotactic intensity grows to infinity. Next we construct local bifurcation branches of stripe and hexagonal stationary solutions in the special case when the habitat domain is a rectangle. For this case, the directions of the branches near the bifurcation points are also obtained. Finally, we exhibit several numerical results for the stationary and oscillating patterns.
Keywords :
pattern formation , Bifurcation , chemotaxis
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena