• Title of article

    Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid

  • Author/Authors

    Guirao، نويسنده , , Juan L.G. and Vera، نويسنده , , Juan A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2012
  • Pages
    7
  • From page
    1648
  • To page
    1654
  • Abstract
    For a gyrostat in a incompressible ideal fluid, by writing Kirchhoff’s equations as a Lie–Poisson system and using a non-canonical Hamiltonian formulation, we provide the expressions of the equilibria when the gyrostatic momentum is constant with the form l = ( 0 , 0 , l ) and present necessary and sufficient conditions for the stability of some of them via the energy–Casimir method and the study of the linearized equations of the motion. Finally, using a recent geometric method introduced by Hanssmann and Van der Meer, we give a sufficient condition for the existence of a non-degenerate Hamiltonian Hopf bifurcation at those equilibria when the gyrostat is symmetric.
  • Keywords
    Lie–Poisson systems , Relative equilibria , Kirchhoff equations , stability , Hamiltonian Hopf bifurcation , Energy–Casimir method
  • Journal title
    Physica D Nonlinear Phenomena
  • Serial Year
    2012
  • Journal title
    Physica D Nonlinear Phenomena
  • Record number

    1730216