Title of article :
On the nonintegrability of magnetic field lines
Author/Authors :
Mahdi، نويسنده , , Adam and Valls، نويسنده , , Claudia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
3
From page :
60
To page :
62
Abstract :
We prove the existence of a magnetic field created by a planar configuration of piecewise rectilinear wires which is not holomorphically integrable when considered as a vector field in C 3 . This is a counterexample to the S. Stefanescu conjecture (1986) in the holomorphic setting. In particular the method of the proof gives an easy way of showing that the corresponding real vector field does not admit a real polynomial first integral which provides also an alternative way of contradicting the Stefanescu conjecture in the polynomial setting.
Keywords :
Magnetic field , Holomorphic integrability , Stefanescu conjecture
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2013
Journal title :
Physica D Nonlinear Phenomena
Record number :
1730370
Link To Document :
بازگشت