Title of article :
On the stability analysis of periodic sine–Gordon traveling waves
Author/Authors :
Jones، نويسنده , , Christopher K.R.T. and Marangell، نويسنده , , Robert and Miller، نويسنده , , Peter D. and Plaza، نويسنده , , Ramَn G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
12
From page :
63
To page :
74
Abstract :
We study the spectral stability properties of periodic traveling waves in the sine–Gordon equation, including waves of both subluminal and superluminal propagation velocities as well as waves of both librational and rotational types. We prove that only subluminal rotational waves are spectrally stable and establish exponential instability in the other three cases. Our proof corrects a frequently cited one given by Scott (1969) [12].
Keywords :
nonlinear waves , Periodic traveling waves , partial differential equations , Sine–Gordon equation , Spectral Analysis , stability
Journal title :
Physica D Nonlinear Phenomena
Serial Year :
2013
Journal title :
Physica D Nonlinear Phenomena
Record number :
1730372
Link To Document :
بازگشت