Title of article :
Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability
Author/Authors :
Balagué، نويسنده , , D. and Carrillo، نويسنده , , J.A. and Laurent، نويسنده , , T. and Raoul، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We investigate nonlocal interaction equations with repulsive–attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse (resp. attract) each other in the short (resp. long) range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance toward a spherical shell stationary state. Otherwise we prove that it is not possible for a radially symmetric solution to converge weakly toward the spherical shell stationary state. We also investigate under which condition it is possible for a non-radially symmetric solution to converge toward a singular stationary state supported on a general hypersurface. Finally we provide a detailed analysis of the specific case of the repulsive–attractive power law potential as well as numerical results.
Keywords :
Repulsive–attractive potentials , Instability conditions , Spherical shells , Radial stability
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena