Title of article :
Discrete set of kink velocities in Josephson structures: The nonlocal double sine–Gordon model
Author/Authors :
Alfimov، نويسنده , , G.L. and Malishevskii، نويسنده , , A.S. and Medvedeva، نويسنده , , E.V.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
We study a model of Josephson layered structure which is characterized by two peculiarities: (i) superconducting layers are thin; (ii) the current–phase relation is non-sinusoidal and is described by two sine harmonics. The governing equation is a nonlocal generalization of double sine–Gordon (NDSG) equation. We argue that the dynamics of fluxons in the NDSG model is unusual. Specifically, we show that there exists a set of particular constant velocities (called “sliding” velocities) for non-radiating stationary fluxon propagation. In dynamics, the presence of this set results in quantization of fluxon velocities: in numerical experiments a traveling kink-like excitation radiates energy and slows down to one of these particular constant velocities, taking the shape of predicted 2 π -kink. We conjecture that the set of these stationary velocities is infinite and present an asymptotic formula for them.
Keywords :
Josephson junction , Double sine–Gordon equation , Nonlocal Josephson electrodynamics , Embedded solitons , Josephson vortex
Journal title :
Physica D Nonlinear Phenomena
Journal title :
Physica D Nonlinear Phenomena