Title of article :
Detection of systolic ejection click using time growing neural network
Author/Authors :
Gharehbaghi، نويسنده , , Arash and Dutoit، نويسنده , , Thierry and Ask، نويسنده , , Per and Sِrnmo، نويسنده , , Leif، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
477
To page :
483
Abstract :
In this paper, we present a novel neural network for classification of short-duration heart sounds: the time growing neural network (TGNN). The input to the network is the spectral power in adjacent frequency bands as computed in time windows of growing length. Children with heart systolic ejection click (SEC) and normal children are the two groups subjected to analysis. The performance of the TGNN is compared to that of a time delay neural network (TDNN) and a multi-layer perceptron (MLP), using training and test datasets of similar sizes with a total of 614 normal and abnormal cardiac cycles. From the test dataset, the classification rate/sensitivity is found to be 97.0%/98.1% for the TGNN, 85.1%/76.4% for the TDNN, and 92.7%/85.7% for the MLP. The results show that the TGNN performs better than do TDNN and MLP when frequency band power is used as classifier input. The performance of TGNN is also found to exhibit better immunity to noise.
Keywords :
Time growing neural network , Heart sound , Time delay neural network , Systolic ejection click
Journal title :
Medical Engineering and Physics
Serial Year :
2014
Journal title :
Medical Engineering and Physics
Record number :
1732538
Link To Document :
بازگشت