Title of article :
Visual search reranking via adaptive particle swarm optimization
Author/Authors :
Zhang، نويسنده , , Lu Jian-Mei، نويسنده , , Tao and Liu، نويسنده , , Yuan-Zhi Tao، نويسنده , , Dacheng and Zhou، نويسنده , , He-Qin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
1811
To page :
1820
Abstract :
Visual search reranking involves an optimization process that uses visual content to recover the “genuine” ranking list from the helpful but noisy one generated by textual search. This paper presents an evolutionary approach, called Adaptive Particle Swarm Optimization (APSO), for unsupervised visual search reranking. The proposed approach incorporates the visual consistency regularization and the ranking list distance. In addition, to address the problem that existing list distance fails to capture the genuine disagreement between two ranking lists, we propose a numerical ranking list distance. Furthermore, the parameters in APSO are self-tuned adaptively according to the fitness values of the particles to avoid being trapped in local optima. We conduct extensive experiments on automatic search task over TRECVID 2006–2007 benchmarks and show significant and consistent improvements over state-of-the-art works.
Keywords :
Adaptive particle swarm optimization , Video search , List distance , Visual search reranking
Journal title :
PATTERN RECOGNITION
Serial Year :
2011
Journal title :
PATTERN RECOGNITION
Record number :
1734124
Link To Document :
بازگشت