Title of article :
Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data
Author/Authors :
Cheng، نويسنده , , K.O. and Law، نويسنده , , N.F. and Siu، نويسنده , , W.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
1281
To page :
1289
Abstract :
DNA microarray experiment inevitably generates gene expression data with missing values. An important and necessary pre-processing step is thus to impute these missing values. Existing imputation methods exploit gene correlation among all experimental conditions for estimating the missing values. However, related genes coexpress in subsets of experimental conditions only. In this paper, we propose to use biclusters, which contain similar genes under subset of conditions for characterizing the gene similarity and then estimating the missing values. To further improve the accuracy in missing value estimation, an iterative framework is developed with a stopping criterion on minimizing uncertainty. Extensive experiments have been conducted on artificial datasets, real microarray datasets as well as one non-microarray dataset. Our proposed biclusters-based approach is able to reduce errors in missing value estimation.
Keywords :
Missing value imputation , Biclustering , Iterative estimation , Gene expression analysis
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734400
Link To Document :
بازگشت