Title of article :
An improved region-based model with local statistical features for image segmentation
Author/Authors :
Ge، نويسنده , , Qi and Xiao، نويسنده , , Liang and Zhang، نويسنده , , Jun and Wei، نويسنده , , Zhi Hui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
13
From page :
1578
To page :
1590
Abstract :
In this paper, we propose a new region-based active contour model (ACM) for image segmentation. In particular, this model utilizes an improved region fitting term to partition the regions of interests in images depending on the local statistics regarding the intensity and the magnitude of gradient in the neighborhood of a contour. By this improved region fitting term, images with noise, intensity non-uniformity, and low-contrast boundaries can be well segmented. Integrated with the duality theory and the anisotropic diffusion process based on structure tensor, a new regularization term is defined through the duality formulation to penalize the length of active contour. By this new regularization term, the structural information of images is utilized to improve the ability of capturing the geometric features such as corners and cusps. From a numerical point of view, we minimize the energy function of our model by an efficient dual algorithm, which avoids the instability and the non-differentiability of traditional numerical solutions, e.g. the gradient descent method. Experiments on medical and natural images demonstrate the advantages of the proposed model over other segmentation models in terms of both efficiency and accuracy.
Keywords :
Local statistics , Dual algorithm , Active contour model , Improved regularization term , image segmentation , Structure tensor
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734436
Link To Document :
بازگشت