Title of article :
Relevance feature mapping for content-based multimedia information retrieval
Author/Authors :
Zhou، نويسنده , , Guang-Tong and Ting، نويسنده , , Kai Ming and Liu، نويسنده , , Fei Tony and Yin، نويسنده , , Yilong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
This paper presents a novel ranking framework for content-based multimedia information retrieval (CBMIR). The framework introduces relevance features and a new ranking scheme. Each relevance feature measures the relevance of an instance with respect to a profile of the targeted multimedia database. We show that the task of CBMIR can be done more effectively using the relevance features than the original features. Furthermore, additional performance gain is achieved by incorporating our new ranking scheme which modifies instance rankings based on the weighted average of relevance feature values. Experiments on image and music databases validate the efficacy and efficiency of the proposed framework.
Keywords :
Content-based multimedia information retrieval , Ranking , Relevance feature , Isolation forest , relevance feedback
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION