Title of article :
Soft biometric classification using local appearance periocular region features
Author/Authors :
Lyle، نويسنده , , Jamie R. and Miller، نويسنده , , Philip E. and Pundlik، نويسنده , , Shrinivas J. and Woodard، نويسنده , , Damon L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
9
From page :
3877
To page :
3885
Abstract :
This paper investigates the effectiveness of local appearance features such as Local Binary Patterns, Histograms of Oriented Gradient, Discrete Cosine Transform, and Local Color Histograms extracted from periocular region images for soft classification on gender and ethnicity. These features are classified by Artificial Neural Network or Support Vector Machine. Experiments are performed on visible and near-IR spectrum images derived from FRGC and MBGC datasets. For 4232 FRGC images of 404 subjects, we obtain baseline gender and ethnicity classifications of 97.3% and 94%. For 350 MBGC images of 60 subjects, we obtain baseline gender and ethnicity results of 90% and 89%.
Keywords :
BIOMETRICS , Gender classification , Ethnic classification , Periocular
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734893
Link To Document :
بازگشت