Title of article :
Multidimensional particle swarm optimization-based unsupervised planar segmentation algorithm of unorganized point clouds
Author/Authors :
Wang، نويسنده , , Lin and Cao، نويسنده , , Jianfu and Han، نويسنده , , Chongzhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
4034
To page :
4043
Abstract :
This paper presents an unsupervised planar segmentation algorithm of unorganized point clouds based on multidimensional (MD) particle swarm optimization (PSO). A robust objective function of the unsupervised planar segmentation is established according to clustering distances of PSO clustering algorithm and inliers of random sample consensus (RANSAC) method. After that, MD PSO algorithm is adopted to optimize the objective function, where the optimal number and positions of the segmented planar patches are sought simultaneously. In order not to get trapped in local optima, a modification strategy of the global best (GB) position of swarm in each dimension is added to the MD PSO algorithm. Thus the unsupervised planar segmentation of point clouds is realized. Experimental results demonstrate the high planar segmentation accuracy of the proposed algorithm.
Keywords :
Multidimensional particle swarm optimization , Unsupervised planar segmentation , objective function , Unorganized point clouds
Journal title :
PATTERN RECOGNITION
Serial Year :
2012
Journal title :
PATTERN RECOGNITION
Record number :
1734923
Link To Document :
بازگشت