• Title of article

    Mechanistic aspects of sonochemical copolymerization of butyl acrylate and methyl methacrylate

  • Author/Authors

    Kanmuri، نويسنده , , Suresh and Moholkar، نويسنده , , Vijayanand S.، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    13
  • From page
    3249
  • To page
    3261
  • Abstract
    This paper attempts to get a physical insight into the sonochemical emulsion copolymerization using butyl acrylate (BA) and methyl methacrylate (MMA) as model monomers at low to moderate ultrasound intensity. The principal physical mechanism underlying beneficial effects of ultrasound on emulsion polymerization system is cavitation, which affects the system in both chemical (i.e. generation of radicals that can initiate/propagate polymerization process) as well as physical (i.e. emulsification of reaction mixture) way. By taking dual approach of coupling experiments with simulations of cavitation bubble dynamics, we have tried to justify the trends in experiments results. The role of cavitation in the present study is found to be only physical. Quite interestingly, the chemical effect of cavitation is found to have no role to play. Reactivity ratios of both monomers for applied experimental conditions have been found to be less than 1, which hints at moderately alternating behavior of copolymerization. Theoretically calculated copolymer composition using the reactivity ratios of copolymers matched well with experimental values. The copolymer composition for all monomer feed ratios is rich in MMA, due to higher reactivity of MMA than BA. The molecular weight of the copolymer reduced with greater fraction of MMA in the reaction mixture. This effect is attributed to nature of termination of the BA (i.e., combination) and MMA (i.e., disproportionation) monomer radicals.
  • Keywords
    Sonochemistry , Cavitation , emulsion polymerization
  • Journal title
    Polymer
  • Serial Year
    2010
  • Journal title
    Polymer
  • Record number

    1735029