Author/Authors :
Gu، نويسنده , , Yuhua and Kumar، نويسنده , , Virendra and Hall، نويسنده , , Lawrence O. and Goldgof، نويسنده , , Dmitry B. and Li، نويسنده , , Ching-Yen and Korn، نويسنده , , René and Bendtsen، نويسنده , , Claus and Velazquez، نويسنده , , Emmanuel Rios and Dekker، نويسنده , , Andre and Aerts، نويسنده , , Hugo and Lambin، نويسنده , , Philippe and Li، نويسنده , , Xiuli and Tian، نويسنده , , Jie and Gatenby، نويسنده , , Robert A. and Gillies، نويسنده , , Robert J.، نويسنده ,
Abstract :
A single click ensemble segmentation (SCES) approach based on an existing “Click & Grow” algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76%, respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated.
Keywords :
Ensemble segmentation , delineation , Lung tumor , Image features , CT , Lesion , Region growing