Title of article :
A Markov random field-regulated Pitman–Yor process prior for spatially constrained data clustering
Author/Authors :
Chatzis، نويسنده , , Sotirios P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
1595
To page :
1603
Abstract :
In this work, we propose a Markov random field-regulated Pitman–Yor process (MRF-PYP) prior for nonparametric clustering of data with spatial interdependencies. The MRF-PYP is constructed by imposing a Pitman–Yor process over the distribution of the latent variables that allocate data points to clusters (model states), the discount hyperparameter of which is regulated by an additionally postulated simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. Further, based on the stick-breaking construction of the Pitman–Yor process, we derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an unsupervised image segmentation application using a real-world dataset. We show that our approach completely outperforms related methods from the field of Bayesian nonparametrics, including the recently proposed infinite hidden Markov random field model and the Dirichlet process prior.
Keywords :
Pitman–Yor process , Clustering , Markov random field
Journal title :
PATTERN RECOGNITION
Serial Year :
2013
Journal title :
PATTERN RECOGNITION
Record number :
1735375
Link To Document :
بازگشت