Title of article :
A new topological clustering algorithm for interval data
Author/Authors :
Cabanes، نويسنده , , Guénaël and Bennani، نويسنده , , Younès and Destenay، نويسنده , , Renaud and Hardy، نويسنده , , André، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Clustering is a very powerful tool for automatic detection of relevant sub-groups in unlabeled data sets. In this paper we focus on interval data: i.e., where the objects are defined as hyper-rectangles. We propose here a new clustering algorithm for interval data, based on the learning of a Self-Organizing Map. The major advantage of our approach is that the number of clusters to find is determined automatically; no a priori hypothesis for the number of clusters is required. Experimental results confirm the effectiveness of the proposed algorithm when applied to interval data.
Keywords :
Self-organizing map , Interval data , Clustering
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION