Title of article :
Neural network language models for off-line handwriting recognition
Author/Authors :
Zamora-Martيnez، نويسنده , , F. and Frinken، نويسنده , , V. and Espaٌa-Boquera، نويسنده , , S. and Castro-Bleda، نويسنده , , M.J. and Fischer، نويسنده , , A. and Bunke، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Unconstrained off-line continuous handwritten text recognition is a very challenging task which has been recently addressed by different promising techniques. This work presents our latest contribution to this task, integrating neural network language models in the decoding process of three state-of-the-art systems: one based on bidirectional recurrent neural networks, another based on hybrid hidden Markov models and, finally, a combination of both. Experimental results obtained on the IAM off-line database demonstrate that consistent word error rate reductions can be achieved with neural network language models when compared with statistical N-gram language models on the three tested systems. The best word error rate, 16.1%, reported with ROVER combination of systems using neural network language models significantly outperforms current benchmark results for the IAM database.
Keywords :
Neural networks (NNs) , Neural network language model (NN LM) , Language models (LMs) , Handwritten text recognition (HTR) , Bidirectional long short-term memory neural networks (BLSTM) , ROVER combination , Hybrid HMM/ANN models
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION