Title of article :
Linear reconstruction measure steered nearest neighbor classification framework
Author/Authors :
Zhang، نويسنده , , Jian and Yang، نويسنده , , Jian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
The linear reconstruction measure (LRM), which determines the nearest neighbors of the query sample in all known training samples by sorting the minimum L2-norm error linear reconstruction coefficients, is introduced in this paper. The intuitive interpretation and mathematical proofs are presented to reveal the efficient working mechanism of LRM. Through analyzing the physical meaning of coefficients and regularization items, we find that LRM provides more useful information and advantages than the conventional similarity measure model which calculates the distance between two entities (i.e. conventional point-to-point, C-PtP). Inspired by the advantages of LRM, the linear reconstruction measure steered nearest neighbor classification framework (LRM-NNCF) is designed with eight classifiers according to different decision rules and models of LRM. Evaluation on several face databases and the experimental results demonstrate that these proposed classifiers can achieve greater performance than the C-PtP based 1-NNs and competitive recognition accuracy and robustness compared with the state-of-the-art classifiers.
Keywords :
Linear reconstruction measure (LRM) , Pattern classification , classifier , Face recognition , Match learning
Journal title :
PATTERN RECOGNITION
Journal title :
PATTERN RECOGNITION