Title of article :
A particle swarm optimization based simultaneous learning framework for clustering and classification
Author/Authors :
Liu، نويسنده , , Ruochen and Chen، نويسنده , , Yangyang and Jiao، نويسنده , , Licheng and Li، نويسنده , , Yangyang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
2143
To page :
2152
Abstract :
A particle swarm optimization based simultaneous learning framework for clustering and classification (PSOSLCC) is proposed in this paper. Firstly, an improved particle swarm optimization (PSO) is used to partition the training samples, the number of clusters must be given in advance, an automatic clustering algorithm rather than the trial and error is adopted to find the proper number of clusters, and a set of clustering centers is obtained to form classification mechanism. Secondly, in order to exploit more useful local information and get a better optimizing result, a global factor is introduced to the update strategy update strategy of particle in PSO. PSOSLCC has been extensively compared with fuzzy relational classifier (FRC), vector quantization and learning vector quantization (VQ+LVQ3), and radial basis function neural network (RBFNN), a simultaneous learning framework for clustering and classification (SCC) over several real-life datasets, the experimental results indicate that the proposed algorithm not only greatly reduces the time complexity, but also obtains better classification accuracy for most datasets used in this paper. Moreover, PSOSLCC is applied to a real world application, namely texture image segmentation with a good performance obtained, which shows that the proposed algorithm has a potential of classifying the problems with large scale.
Keywords :
Clustering , image segmentation , Classification , particle swarm optimization , Global factor
Journal title :
PATTERN RECOGNITION
Serial Year :
2014
Journal title :
PATTERN RECOGNITION
Record number :
1736296
Link To Document :
بازگشت