Title of article :
Structure and orientational ordering in a fluid of elongated quadrupolar molecules
Author/Authors :
Singh، نويسنده , , Ram Chandra، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
48
To page :
57
Abstract :
A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic–nematic transition in a system of fluids of elongated molecules interacting via the Gay–Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein–Zernike equation using the Percus–Yevick integral equation theory in the (reduced) temperature range of 1.6 ≤ T ∗ ≤ 3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic–nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.
Keywords :
quadrupole moments , Gay–Berne potential , Pair-correlation functions , Isotropic–nematic transition , Density-functional theory
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2013
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
1736356
Link To Document :
بازگشت