Title of article :
Information theoretic clustering using a k-nearest neighbors approach
Author/Authors :
Vikjord، نويسنده , , Vidar V. and Jenssen، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
3070
To page :
3081
Abstract :
We develop a new non-parametric information theoretic clustering algorithm based on implicit estimation of cluster densities using the k-nearest neighbors (k-nn) approach. Compared to a kernel-based procedure, our hierarchical k-nn approach is very robust with respect to the parameter choices, with a key ability to detect clusters of vastly different scales. Of particular importance is the use of two different values of k, depending on the evaluation of within-cluster entropy or across-cluster cross-entropy, and the use of an ensemble clustering approach wherein different clustering solutions vote in order to obtain the final clustering. We conduct clustering experiments, and report promising results.
Keywords :
Information theory , Clustering , Scale , divergence , entropy , Parzen windowing , K-NN
Journal title :
PATTERN RECOGNITION
Serial Year :
2014
Journal title :
PATTERN RECOGNITION
Record number :
1736525
Link To Document :
بازگشت