• Title of article

    Toward maximum-predictive-value classification

  • Author/Authors

    Chalmers، نويسنده , , Eric and Mizianty، نويسنده , , Marcin and Parent، نويسنده , , Eric and Yuan، نويسنده , , Yan and Lou، نويسنده , , Edmond، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    10
  • From page
    3949
  • To page
    3958
  • Abstract
    Methods for tackling classification problems usually maximize prediction accuracy. However some applications require maximum predictive value instead. That is, the designer hopes to predict one of the classes with maximum precision, and is less concerned about the others. Some techniques exist for fine-tuning a model׳s predictive value, but there seems to be a shortage of methods to generate maximum-predictive-value classifiers. We propose a method using a nearest-prototype-style classifier optimized by a genetic algorithm. We test its performance using 13 publicly available data sets from the life sciences. The method generally gives more effective high-predictive-value models than standard classification methods optimized for predictive value.
  • Keywords
    Precision , Predictive value , Nearest prototype , Classification
  • Journal title
    PATTERN RECOGNITION
  • Serial Year
    2014
  • Journal title
    PATTERN RECOGNITION
  • Record number

    1736723