Title of article
Toward maximum-predictive-value classification
Author/Authors
Chalmers، نويسنده , , Eric and Mizianty، نويسنده , , Marcin and Parent، نويسنده , , Eric and Yuan، نويسنده , , Yan and Lou، نويسنده , , Edmond، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
10
From page
3949
To page
3958
Abstract
Methods for tackling classification problems usually maximize prediction accuracy. However some applications require maximum predictive value instead. That is, the designer hopes to predict one of the classes with maximum precision, and is less concerned about the others. Some techniques exist for fine-tuning a model׳s predictive value, but there seems to be a shortage of methods to generate maximum-predictive-value classifiers. We propose a method using a nearest-prototype-style classifier optimized by a genetic algorithm. We test its performance using 13 publicly available data sets from the life sciences. The method generally gives more effective high-predictive-value models than standard classification methods optimized for predictive value.
Keywords
Precision , Predictive value , Nearest prototype , Classification
Journal title
PATTERN RECOGNITION
Serial Year
2014
Journal title
PATTERN RECOGNITION
Record number
1736723
Link To Document