Title of article :
Learning context-sensitive similarity by shortest path propagation
Author/Authors :
Wang، نويسنده , , Jingyan and Li، نويسنده , , Yongping and Bai، نويسنده , , Xiang and Zhang، نويسنده , , Ying and Wang، نويسنده , , Chao and Tang، نويسنده , , Ning، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
2367
To page :
2374
Abstract :
In this paper, we introduce a novel shape/object retrieval algorithm shortest path propagation (SSP). Given a query object q and a target database object p, we explicitly find the shortest path between them in the distance manifold of the database objects. Then a new distance measure between q and p is learned based on the database objects on the shortest path to replace the original distance measure. The promising results on both MEPG-7 shape dataset and a protein dataset demonstrate that our method can significantly improve the ranking of the object retrieval.
Keywords :
Shortest path propagation , Shape retrieval , Contextual similarity learning , Graph transduction
Journal title :
PATTERN RECOGNITION
Serial Year :
2011
Journal title :
PATTERN RECOGNITION
Record number :
1736804
Link To Document :
بازگشت