Title of article :
Reflections on the -Fourier transform and the -Gaussian function
Author/Authors :
Plastino، نويسنده , , A. and Rocca، نويسنده , , M.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
3952
To page :
3961
Abstract :
The standard q -Fourier Transform (qFT) of a constant diverges, which begs for a better treatment. In addition, Hilhorst has conclusively proved that the ordinary qFT is not of a one-to-one character for an infinite set of functions [H.J. Hilhorst, J. Stat. Mech. (2010) P10023]. Generalizing the ordinary qFT analyzed in [S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76 (2008) 307], we appeal here to a complex q -Fourier transform, and show that the problems above mentioned are overcome.
Keywords :
Complex-plane generalization , One-to-one character , q -Fourier transform , Tempered ultradistributions
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2013
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
1737204
Link To Document :
بازگشت