Title of article :
Fuzzy overlapping community detection based on local random walk and multidimensional scaling
Author/Authors :
Wang، نويسنده , , Wenjun and Liu، نويسنده , , Dong and Liu، نويسنده , , Xiao and Pan، نويسنده , , Lin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
6578
To page :
6586
Abstract :
A fuzzy overlapping community is an important kind of overlapping community in which each node belongs to each community to different extents. It exists in many real networks but how to identify a fuzzy overlapping community is still a challenging task. In this work, the concept of local random walk and a new distance metric are introduced. Based on the new distance measurement, the dissimilarity index between each node of a network is calculated firstly. Then in order to keep the original node distance as much as possible, the network structure is mapped into low-dimensional space by the multidimensional scaling (MDS). Finally, the fuzzy c -means clustering is employed to find fuzzy communities in a network. The experimental results show that the proposed algorithm is effective and efficient to identify the fuzzy overlapping communities in both artificial networks and real-world networks.
Keywords :
Community detection , Local random walk , multidimensional scaling , Fuzzy c -means
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2013
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
1737634
Link To Document :
بازگشت