• Title of article

    Percolation of interacting classical dimers on the square lattice

  • Author/Authors

    Li، نويسنده , , Yang and Wu، نويسنده , , Dayan and Huang، نويسنده , , Xianshan and Ding، نويسنده , , Chengxiang، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    6
  • From page
    285
  • To page
    290
  • Abstract
    We study the percolation properties of the interacting classical dimer model on the square lattice by means of Monte Carlo simulations and finite-size scaling analysis. We define Ising clusters based on the dimer configuration; the percolation point of the clusters coincides with the critical point of the Kosterlitz–Thouless transition of the dimer model, which is T c = 0.654 ( 2 ) . Furthermore, we find that the largest cluster at the Kosterlitz–Thouless point is a fractal, with fractal dimension D c = 1.874 ( 2 ) , which coincides with the critical exponent describing the critical behavior of the dimer–dimer correlation function, which is theoretically predicted to be 15/8.
  • Keywords
    fractal , Percolation model , Dimer model , Kosterlitz–Thouless transition
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Serial Year
    2014
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Record number

    1738297