Title of article :
Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel
Author/Authors :
An، نويسنده , , Jung-Chul and Weaver، نويسنده , , Alia and Kim، نويسنده , , Byungnam and Barkatt، نويسنده , , Aaron and Poster، نويسنده , , Dianne and Vreeland، نويسنده , , Wyatt N. and Silverman، نويسنده , , Joseph and Al-Sheikhly، نويسنده , , Mohamad، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
10
From page :
5746
To page :
5755
Abstract :
Studies of the radiation-induced synthesis of poly(vinylpyrrolidone) (PVP) nanogels, intended to provide a basis for obtaining intra-molecular cross-linked products, which are more useful in drug delivery, show that a sharp change in the controlling mechanism from inter-molecular to intra-molecular cross-linking occurs above a threshold temperature around 50 °C–55 °C, even though the rate of inter-molecular cross-linking is enhanced as the temperature is raised. When aqueous solutions of PVP are irradiated, the activation energy of the decay of the PVP· radical is observed to rise sharply above this threshold temperature. This can be attributed to the collapse of the polymer chains, which occurs at temperatures above approximately 55 °C and leads to a reduction of the Rh of the irradiated polymer molecules at 77 °C to (44 ± 3) % of that of PVP molecules that were not irradiated at 20 °C, as shown by the results of AFFFF measurements. The abrupt transition to a mechanism controlled by intra-molecular cross-linking is due to the thermal collapse of the polymer structure. This accounts for the observation that activation energy is higher within the temperature range above 55 °C. Higher pulse repetition rates during electron irradiation also promote intra-molecular cross-linking.
Keywords :
Nanogel , Cross-linking , Poly(vinylpyrrolidone)
Journal title :
Polymer
Serial Year :
2011
Journal title :
Polymer
Record number :
1738406
Link To Document :
بازگشت