Title of article
Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels
Author/Authors
Krsko، نويسنده , , Peter and Kaplan، نويسنده , , Jeffrey B. and Libera، نويسنده , , Matthew، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
8
From page
589
To page
596
Abstract
We constructed surface-patterned hydrogels using low-energy focused electron beams to locally crosslink poly(ethylene glycol) (PEG) thin films on silanized glass substrates. Derived from electron-beam lithography, this technique was used to create patterned hydrogels with well-defined spatial positions and degrees of swelling. We found that cells of the bacterium Staphylococcus epidermidis adhered to and grew on the silanized glass substrates. These cells did not, however, adhere to surfaces covered by high-swelling lightly crosslinked PEG hydrogels. This finding is consistent with the cell-repulsiveness generally attributed to PEGylated surfaces. In contrast, S. epidermidis cells did adhere to surfaces covered by low-swelling highly crosslinked hydrogels. By creating precise patterns of repulsive hydrogels combined with adhesive hydrogels or with exposed glass substrate, we were able to spatially control the adhesion of S. epidermidis. Significantly, adhesive areas small enough to trap single bacterial cells could be fabricated. The results suggest that the lateral confinement imposed by cell-repulsive hydrogels hindered the cell proliferation and development into larger bacterial colonies.
Keywords
Biofilm , Adhesion , Hydrogel , Surface patterning , Bacteria
Journal title
Acta Biomaterialia
Serial Year
2009
Journal title
Acta Biomaterialia
Record number
1752850
Link To Document