• Title of article

    Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds

  • Author/Authors

    Kanczler، نويسنده , , Janos M. and Mirmalek-Sani، نويسنده , , Sayed-Hadi and Hanley، نويسنده , , Neil A. and Ivanov، نويسنده , , Alexander L. and Barry، نويسنده , , John J.A. and Upton، نويسنده , , Clare and Shakesheff، نويسنده , , Kevin M. and Howdle، نويسنده , , Steven M. and Antonov، نويسنده , , Eugeuni N. and Bagratashvili، نويسنده , , Victor N. and Popov، نويسنده , , Vladimir K. and Oreffo، نويسنده , , Richard O.C.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    9
  • From page
    2063
  • To page
    2071
  • Abstract
    For optimal bone regeneration, scaffolds need to fit anatomically into the requisite bone defects and, ideally, augment cell growth and differentiation. In this study we evaluated novel computationally designed surface selective laser sintering (SSLS) scaffolds for their biocompatibility as templates, in vitro and in vivo, for human fetal femur-derived cell viability, growth and osteogenesis. Fetal femur-derived cells were successfully cultured on SSLS-poly(d,l)-lactic acid (SSLS-PLA) scaffolds expressing alkaline phosphatase activity after 7 days. Cell proliferation, ingrowth, Alcian blue/Sirius red and type I collagen positive staining of matrix deposition were observed for fetal femur-derived cells cultured on SSLS-PLA scaffolds in vitro and in vivo. SSLS-PLA scaffolds and SSLS-PLA scaffolds seeded with fetal femur-derived cells implanted into a murine critical-sized femur segmental defect model aided the regeneration of the bone defect. SSLS techniques allow fabrication of biocompatible/biodegradable scaffolds, computationally designed to fit any defect, providing a template for cell osteogenesis in vitro and in vivo.
  • Keywords
    osteogenesis , Tissue engineering , Surface selective laser sintering , Human fetal femur-derived cells
  • Journal title
    Acta Biomaterialia
  • Serial Year
    2009
  • Journal title
    Acta Biomaterialia
  • Record number

    1753137