Title of article :
Increased mucociliary differentiation of human respiratory epithelial cells on hyaluronan-derivative membranes
Author/Authors :
Huang، نويسنده , , Tsung-Wei and Chan، نويسنده , , Yen-Hui and Cheng، نويسنده , , Po-Wen and Young، نويسنده , , Yi-Ho and Lou، نويسنده , , Pei-Jen and Young، نويسنده , , Tai-Horng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
1191
To page :
1199
Abstract :
The selection of a scaffold to facilitate mucociliary differentiation of respiratory epithelial cells (RECs) is crucial in the development of tissue engineering of respiratory epithelium. However, how the differentiation of RECs is influenced by the biomaterials has never been thoroughly explored. Previously, hyaluronan derivatives were considered as unsuitable biomaterials for culture of respiratory epithelium. In contrast, this study demonstrates that the membranous scaffolds made from benzyl esters of hyaluronic acids are capable of providing a more preferential environment for human RECs than conventionally used collagen-based scaffolds. The proliferation and mucociliary differentiation of RECs were examined by MTT assays, scanning electron microscopy, immunofluorescence, immunoblotting and gene expression. The percentage of ciliated cells in cultured RECs increased from 12.4% on collagen to 20.4% on hyaluronan-derivative membranes with a pseudostratified polarized layer that closely resembled the composition of the native epithelium. The expression levels of MUC5AC and MUC5B mRNA were higher on hyaluronan-based scaffolds than those on collagen. The presence of a hyaluronan-binding domain, CD44 and the receptor for hyaluronan-mediated motility of RECs were also demonstrated. Accordingly, the mucociliary differentiation-promoting effect of hyaluronan-derivative membranes indicates that it may be applied to the tissue engineering of respiratory epithelium.
Keywords :
MEMBRANE , Hyaluronan , HYAFF , Respiratory epithelium , Mucociliary differentiation
Journal title :
Acta Biomaterialia
Serial Year :
2010
Journal title :
Acta Biomaterialia
Record number :
1753693
Link To Document :
بازگشت