Title of article :
Supercritical CO2 fluid-foaming of polymers to increase porosity: A method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?
Author/Authors :
Tayton، نويسنده , , Edward and Purcell، نويسنده , , M. and Aarvold، نويسنده , , A. and Smith، نويسنده , , J.O. and Kalra، نويسنده , , S. and Briscoe، نويسنده , , Richard A. and Shakesheff، نويسنده , , Vladimir K. and Howdle، نويسنده , , S.M. and Dunlop، نويسنده , , D.G. and Oreffo، نويسنده , , R.O.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
1918
To page :
1927
Abstract :
Disease transmission, availability and cost of allografts have resulted in significant efforts to find an alternative for use in impaction bone grafting (IBG). Recent studies identified two polymers with both structural strength and biocompatibility characteristics as potential replacements. The aim of this study was to assess whether increasing the polymer porosity further enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic biomaterial alternative to allografts in IBG. Solid and porous poly(DL-lactide) (PDLLA) and poly(DL-lactide-co-glycolide) (PDLLGA) scaffolds were produced via melt processing and supercritical CO2 foaming, and the differences characterized using scanning electron microscopy (SEM). Mechanical testing included milling and impaction, with comparisons made using a shear testing rig as well as a novel agitation test for cohesion. Cellular compatibility tests for cell number, viability, and osteogenic differentiation using WST-1 assays, fluorostaining, and ALP assays were determined following 14 day culture with skeletal stem cells. SEM showed excellent porosity throughout both of the supercritical-foam-produced polymer scaffolds, with pores between 50 and 200 μm. Shear testing showed that the porous polymers exceeded the shear strength of allograft controls (P < 0.001). Agitation testing showed greater cohesion between the particles of the porous polymers (P < 0.05). Cellular studies showed increased cell number, viability, and osteogenic differentiation on the porous polymers compared to solid block polymers (P < 0.05). The use of supercritical CO2 to generate porous polymeric biodegradable scaffolds significantly improves the cellular compatibility and cohesion observed compared to non-porous counterparts, without substantial loss of mechanical shear strength. These improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG.
Keywords :
porosity , Scaffold , Mesenchymal Stem Cell , Bone tissue engineering , Biocompatibility
Journal title :
Acta Biomaterialia
Serial Year :
2012
Journal title :
Acta Biomaterialia
Record number :
1756116
Link To Document :
بازگشت