• Title of article

    Discovery of low mucus adhesion surfaces

  • Author/Authors

    Gu، نويسنده , , Minghao and Yildiz، نويسنده , , Hasan and Carrier، نويسنده , , Rebecca and Belfort، نويسنده , , Georges، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    7
  • From page
    5201
  • To page
    5207
  • Abstract
    Mucus secretion from the body is ubiquitous, and finding materials that resist mucus adhesion is a major technological challenge. Here, using a high throughput platform with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1 h static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 h. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen bonding in reducing mucus adsorption. For a series of polyethylene glycol (PEG) monomers with changing molecular weight from 144 g mol−1 to 1100 g mol−1, we observed an excellent linear correlation (R2 = 0.998) between relative amount adsorbed and the distance from a water point in a specialized Hansen solubility parameter plot, emphasizing the role of surface–water interactions for PEG modified surfaces.
  • Keywords
    high throughput , UV-induced graft polymerization , Low mucus adhesion , MONOMER , Membrane surface
  • Journal title
    Acta Biomaterialia
  • Serial Year
    2013
  • Journal title
    Acta Biomaterialia
  • Record number

    1756831