Author/Authors :
Cano-Garrido، نويسنده , , Olivia and Rodrيguez-Carmona، نويسنده , , Escarlata and Dيez-Gil، نويسنده , , Cesar and Vلzquez، نويسنده , , Esther and Elizondo، نويسنده , , Elisa and Cubarsi، نويسنده , , Rafael and Seras-Franzoso، نويسنده , , Joaquin and Corchero، نويسنده , , José Luis and Rinas، نويسنده , , Ursula and Ratera، نويسنده , , Imma and Ventosa، نويسنده , , Nora and Veciana، نويسنده , , Jaume and Villaverde، نويسنده , , Antonio and Garcيa-Fruitَs، نويسنده , , Elena، نويسنده ,
Abstract :
Slow protein release from amyloidal materials is a molecular platform used by nature to control protein hormone secretion in the endocrine system. The molecular mechanics of the sustained protein release from amyloids remains essentially unexplored. Inclusion bodies (IBs) are natural amyloids that occur as discrete protein nanoparticles in recombinant bacteria. These protein clusters have been recently explored as protein-based functional biomaterials with diverse biomedical applications, and adapted as nanopills to deliver recombinant protein drugs into mammalian cells. Interestingly, the slow protein release from IBs does not significantly affect the particulate organization and morphology of the material, suggesting the occurrence of a tight scaffold. Here, we have determined, by using a combined set of analytical approaches, a sponge-like supramolecular organization of IBs combining differently folded protein versions (amyloid and native-like), which supports both mechanical stability and sustained protein delivery. Apart from offering structural clues about how amyloid materials release their monomeric protein components, these findings open exciting possibilities for the tailored development of smart biofunctional materials, adapted to mimic the functions of amyloid-based secretory glands of higher organisms.
Keywords :
Nanoparticles , functional amyloid , Nanomedicine , Protein release , biomaterial