Title of article :
A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system
Author/Authors :
Leong، نويسنده , , Wenyan and Lau، نويسنده , , Ting Ting and Wang، نويسنده , , Dong-An، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
9
From page :
6459
To page :
6467
Abstract :
In this study, a novel therapeutic cell delivery methodology in the form of hydrogel encapsulating cell-laden microspheres was developed and investigated. As a model cell for cartilage tissue engineering, chondrocytes were successfully encapsulated in gelatin-based microspheres (mostly of diameter 50–100 μm, centred at 75–100 μm) with high cell viability during the formation of microspheres via a water-in-oil single emulsion process under a low temperature without any chemical treatment. These cell-laden microspheres were then encapsulated in alginate-based hydrogel constructs. By elevating the temperature to 37 °C, the cell-laden microspheres were completely dissolved within 2 days, resulting in the same number of same-sized spherical cavities in hydrogel bulk, along with which the encapsulated cells were released from the microspheres and suspended inside the cavities to be cultivated for further development. In this cell delivery system, the microspheres played a dual role as both removable cell vehicles and porogens for creation of the intra-hydrogel cavities, in which the delivered cells were provided with both free living spaces and a better permeable environment. This temperature-cured dissolvable gelatin microsphere-based cell carrier (tDGMC) associating with cell-laden hydrogel scaffold was attempted and evaluated through WST-1, quantitative polymerase chain reaction, biochemical assays and various immunohistochemistry and histology stains. The results indicate that tDGMC technology can facilitate the delivery of chondrocytes, as a non-anchorage-dependent therapeutic cell, with significantly greater efficiency.
Keywords :
microspheres , Hydrogel , chondrocytes , Cartilage , Tissue engineering
Journal title :
Acta Biomaterialia
Serial Year :
2013
Journal title :
Acta Biomaterialia
Record number :
1757042
Link To Document :
بازگشت