Title of article :
Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase
Author/Authors :
Chen، نويسنده , , Peiyu and Yang، نويسنده , , Kai-Chiang and Wu، نويسنده , , Chang-Chin and Yu، نويسنده , , Jeen-Huei and Lin، نويسنده , , Feng-Huei and Sun، نويسنده , , Jui-Sheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
912
To page :
920
Abstract :
In this study, we developed a method to fabricate large, perfusable, macroporous, cell-laden hydrogels. This method is suitable for efficient cell seeding, and can maintain sufficient oxygen delivery and mass transfer. We first loaded three types of testing cells (including NIH 3T3, ADSC and Huh7) into gelatin hydrogel filaments, then cross-linked the cell-laden gelatin hydrogel filaments using microbial transglutaminase (mTGase). In situ cross-linking by mTGase was found to be non-cytotoxic and prevented the scattering of the cells after delivery. The gelatin hydrogel constructs kept the carried cells viable; also, the porosity and permeability were adequate for a perfusion system. Cell proliferation was better under perfusion culture than under static culture. When human umbilical vein endothelial cells were seeded into the constructs, we demonstrated that they stably formed an even coverage on the surface of the hydrogel filaments, serving as a preliminary microvasculature network. We concluded that this method provides a viable solution for cell seeding, oxygen delivery, and mass transfer in large three-dimensional (3-D) tissue engineering. Furthermore, it has the potential for being a workhorse in studies involving 3-D cell cultures and tissue engineering.
Keywords :
Scaffold , Hydrogel , Cell culture , Tissue engineering , Three-Dimensional
Journal title :
Acta Biomaterialia
Serial Year :
2014
Journal title :
Acta Biomaterialia
Record number :
1757839
Link To Document :
بازگشت