Title of article :
Highly porous and mechanically robust polyester poly(ethylene glycol) sponges as implantable scaffolds
Author/Authors :
Ozcelik، نويسنده , , Berkay and Blencowe، نويسنده , , Anton and Palmer، نويسنده , , Jason and Ladewig، نويسنده , , Katharina and Stevens، نويسنده , , Geoffrey W. and Abberton، نويسنده , , Keren M. and Morrison، نويسنده , , Wayne A. and Qiao، نويسنده , , Greg G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
12
From page :
2769
To page :
2780
Abstract :
The development of suitable scaffolds plays a significant role in tissue engineering research. Although scaffolds with promising features have been produced via a variety of innovative methods, there are no fully synthetic tissue engineering scaffolds that possess all the desired properties in one three-dimensional construct. Herein, we report the development of novel polyester poly(ethylene glycol) (PEG) sponges that display many of the desirable scaffold characteristics. Our novel synthetic approach utilizes acid chloride/alcohol chemistry, whereby the reaction between a hydroxyl end-functionalized 4-arm PEG and sebacoyl chloride resulted in cross-linking and simultaneous hydrogen chloride gas production, which was exploited for the in situ formation of highly interconnected pores. Variation of the fabrication conditions, including the precursor volume and concentration, allowed the pore size and structure as well as the compressive properties to be tailored. The sponges were found to possess excellent elastic properties, preserving their shape even after 80% compressive strain without failure. The benign properties of the sponges were demonstrated in an in vivo subcutaneous rat model, which also revealed uniform infiltration of vascularized tissue by 8 weeks and complete degradation of the sponges by 16 weeks, with only a minimal inflammatory response being observed over the course of the experiments.
Keywords :
Biodegradation , polyethylene glycol , Scaffold , Biocompatibility
Journal title :
Acta Biomaterialia
Serial Year :
2014
Journal title :
Acta Biomaterialia
Record number :
1758158
Link To Document :
بازگشت